Evaluation of Selected Natural Compounds as Dual Inhibitors of Catechol-O-Methyltransferase and Monoamine Oxidase / Idalet Engelbrecht, Jacobus P. Petzer, Anél Petzer

Background: The most effective symptomatic treatment of Parkinson’s disease remains the metabolic precursor of dopamine, L-dopa. To enhance the efficacy of L-dopa, it is often combined with inhibitors of the enzymes, catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO) B, key metabolic enzymes of L-dopa and dopamine. Objective: This study attempted to discover compounds that exhibit dual inhibition of COMT and MAO-B among a library of 40 structurally diverse natural compounds. Such dual acting inhibitors may be effective as adjuncts to L-dopa and offer enhanced value in the management of Parkinson’s disease. Methods: Selected natural compounds were evaluated as in vitro inhibitors of rat liver COMT and recombinant human MAO. Reversibility of MAO inhibition was investigated by dialysis. Results: Among the natural compounds morin (IC50 = 1.32 µM), chlorogenic acid (IC50 = 6.17 µM), (+)-catechin (IC50 = 0.86 µM), alizarin (IC50 = 0.88 µM), fisetin (IC50 = 5.78 µM) and rutin (IC50 = 25.3 µM) exhibited COMT inhibition. Among these active COMT inhibitors only morin (IC50 = 16.2 µM), alizarin (IC50 = 8.16 µM) and fisetin (IC50 = 7.33 µM) were noteworthy MAO inhibitors, with specificity for MAO-A. Conclusion: None of the natural products investigated here are dual COMT/MAO-B inhibitors. However, good potency COMT inhibitors have been identified, which may serve as leads for future development of COMT inhibitors.

Medienart:

E-Artikel

Erscheinungsjahr:

2019

Erschienen:

2019

Enthalten in:

Zur Gesamtaufnahme - volume:19

Enthalten in:

Central nervous system agents in medicinal chemistry - 19(2019), 2, Seite 133-

Sprache:

Englisch

Beteiligte Personen:

Engelbrecht, Idalet [VerfasserIn]
Petzer, Jacobus P. [VerfasserIn]
Petzer, Anél [VerfasserIn]

Links:

FID Access [lizenzpflichtig]

Umfang:

1 Online-Ressource (13 p)

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

KFL009044884