In silico design of novel bioactive molecules to treat breast cancer with chlorogenic acid derivatives: a computational and SAR approach

Introduction: Cancer is a vast group of diseases comprising abnormal cells that multiply and grow uncontrollably, and it is one of the top causes of death globally. Several types of cancers are diagnosed, but the incidence of breast cancer, especially in postmenopausal women, is increasing daily. Chemotherapeutic agents used to treat cancer are generally associated with severe side effects on host cells, which has led to a search for safe and potential alternatives. Therefore, the present research has been conducted to find novel bioactive molecules to treat breast cancer with chlorogenic acid and its derivatives. Chlorogenic acid was selected because of its known activity in the field.Methods: Several chlorogenic acid derivatives were subjected to computational studies such as molecular docking, determination of absorption, distribution, metabolism, and excretion (ADME), druglikeness, toxicity, and prediction of activity spectra for substances (PASS) to develop a potential inhibitor of breast cancer. The Protein Data Bank (PDB) IDs used for docking purposes were 7KCD, 3ERT, 6CHZ, 3HB5, and 1U72.Result: Exhaustive analysis of results has been conducted by considering various parameters, like docking score, binding energy, types of interaction with important amino acid residues in the binding pocket, ADME, and toxicity data of compounds. Among all the selected derivatives, CgE18, CgE11, CgAm13, CgE16, and CgE9 have astonishing interactions, excellent binding energy, and better stability in the active site of targeted proteins. The docking scores of compound CgE18 were −11.63 kcal/mol, −14.15 kcal/mol, and −12.90 kcal/mol against breast cancer PDB IDs 7KCD, 3HB5, and 1U72, respectively. The docking scores of compound CgE11 were −10.77 kcal/mol and −9.11 kcal/mol against breast cancer PDB IDs 3ERT and 6CHZ, respectively, whereas the docking scores of epirubicin hydrochloride were −3.85 kcal/mol, −6.4 kcal/mol, −8.76 kcal/mol, and −10.5 kcal/mol against PDB IDs 7KCD, 3ERT, 6CHZ, and 3HB5. The docking scores of 5-fluorouracil were found to be −5.25 kcal/mol, −3.43 kcal/mol, −3.73 kcal/mol, and −5.29 kcal/mol against PDB IDs 7KCD, 3ERT, 6CHZ, and 3HB5, which indicates the designed compounds have a better docking score than some standard drugs.Conclusion: Taking into account the results of molecular docking, drug likeness analysis, absorption, distribution, metabolism, excretion, and toxicity (ADMET) evaluation, and PASS, it can be concluded that chlorogenic acid derivatives hold promise as potent inhibitors for the treatment of breast cancer..

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:14

Enthalten in:

Frontiers in Pharmacology - 14(2023)

Sprache:

Englisch

Beteiligte Personen:

Renu Sehrawat [VerfasserIn]
Priyanka Rathee [VerfasserIn]
Pooja Rathee [VerfasserIn]
Sarita Khatkar [VerfasserIn]
Esra Küpeli Akkol [VerfasserIn]
Anurag Khatkar [VerfasserIn]
Eduardo Sobarzo-Sánchez [VerfasserIn]
Eduardo Sobarzo-Sánchez [VerfasserIn]

Links:

doi.org [kostenfrei]
doaj.org [kostenfrei]
www.frontiersin.org [kostenfrei]
Journal toc [kostenfrei]

Themen:

Breast cancer
Chlorogenic acid
Drug development
In silico design
Molecular docking
Pharmacokinetic
Therapeutics. Pharmacology

doi:

10.3389/fphar.2023.1266833

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

DOAJ099345447