Light-Driven Raman Coherence as a Nonthermal Route to Ultrafast Topology Switching in a Dirac Semimetal

A grand challenge underlies the entire field of topology-enabled quantum logic and information science: how to establish topological control principles driven by quantum coherence and understand the time dependence of such periodic driving. Here we demonstrate a few-cycle THz-pulse-induced phase transition in a Dirac semimetal ZrTe_{5} that is periodically driven by vibrational coherence due to excitation of the lowest Raman active mode. Above a critical THz-pump field threshold, there emerges a long-lived metastable phase, approximately 100 ps, with unique Raman phonon-assisted topological switching dynamics absent for optical pumping. The switching also manifests itself by distinct features: nonthermal spectral shape, relaxation slowing near the Lifshitz transition where the critical Dirac point occurs, and diminishing signals at the same temperature that the Berry-curvature-induced anomalous Hall effect magnetoresistance vanishes. These results, together with first-principles modeling, identify a mode-selective Raman coupling that drives the system from strong to weak topological insulators with a Dirac semimetal phase established at a critical atomic displacement controlled by the phonon coherent pumping. Harnessing of vibrational coherence can be extended to steer symmetry-breaking transitions, i.e., Dirac to Weyl ones, with implications for THz topological quantum gate and error correction applications..

Medienart:

E-Artikel

Erscheinungsjahr:

2020

Erschienen:

2020

Enthalten in:

Zur Gesamtaufnahme - volume:10

Enthalten in:

Physical Review X - 10(2020), 2, p 021013

Sprache:

Englisch

Beteiligte Personen:

C. Vaswani [VerfasserIn]
L.-L. Wang [VerfasserIn]
D. H. Mudiyanselage [VerfasserIn]
Q. Li [VerfasserIn]
P. M. Lozano [VerfasserIn]
G. D. Gu [VerfasserIn]
D. Cheng [VerfasserIn]
B. Song [VerfasserIn]
L. Luo [VerfasserIn]
R. H. J. Kim [VerfasserIn]
C. Huang [VerfasserIn]
Z. Liu [VerfasserIn]
M. Mootz [VerfasserIn]
I. E. Perakis [VerfasserIn]
Y. Yao [VerfasserIn]
K. M. Ho [VerfasserIn]
J. Wang [VerfasserIn]

Links:

doi.org [kostenfrei]
doaj.org [kostenfrei]
doi.org [kostenfrei]
doi.org [kostenfrei]
Journal toc [kostenfrei]

Themen:

Physics

doi:

10.1103/PhysRevX.10.021013

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

DOAJ075183919