GFP-Forked, a genetic reporter for studying Drosophila oocyte polarity

The polarized organization of the Drosophila oocyte can be visualized by examining the asymmetric localization of mRNAs, which is supported by networks of polarized microtubules (MTs). In this study, we used the gene forked, the putative Drosophila homologue of espin, to develop a unique genetic reporter for asymmetric oocyte organization. We generated a null allele of the forked gene using the CRISPR-Cas9 system and found that forked is not required for determining the axes of the Drosophila embryo. However, ectopic expression of a truncated form of GFP-Forked generated a distinct network of asymmetric Forked, which first accumulated at the oocyte posterior and was then restricted to the anterolateral region of the oocyte cortex in mid-oogenesis. This localization pattern resembled that reported for the polarized MTs network. Indeed, pharmacological and genetic manipulation of the polarized organization of the oocyte showed that the filamentous Forked network diffused throughout the entire cortical surface of the oocyte, as would be expected upon perturbation of oocyte polarization. Finally, we demonstrated that Forked associated with Short-stop and Patronin foci, which assemble non-centrosomal MT-organizing centers. Our results thus show that clear visualization of asymmetric GFP-Forked network localization can be used as a novel tool for studying oocyte polarity..

Medienart:

E-Artikel

Erscheinungsjahr:

2019

Erschienen:

2019

Enthalten in:

Zur Gesamtaufnahme - volume:8

Enthalten in:

Biology Open - 8(2019), 1

Sprache:

Englisch

Beteiligte Personen:

Raju Baskar [VerfasserIn]
Anna Bakrhat [VerfasserIn]
Uri Abdu [VerfasserIn]

Links:

doi.org [kostenfrei]
doaj.org [kostenfrei]
bio.biologists.org [kostenfrei]
Journal toc [kostenfrei]

Themen:

Biology (General)
CRISPR
Drosophila
Forked
Microtubules
NcMTOC
Oocyte
Polarity
Q
Science

doi:

10.1242/bio.039552

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

DOAJ057905061