A Large-Deformation Gradient Damage Model for Single Crystals Based on Microdamage Theory

This work aims at the unification of the thermodynamically consistent representation of the micromorphic theory and the microdamage approach for the purpose of modeling crack growth and damage regularization in crystalline solids. In contrast to the thermodynamical representation of the microdamage theory, micromorphic contribution to flow resistance is defined in a dual fashion as energetic and dissipative in character, in order to bring certain clarity and consistency to the modeling aspects. The approach is further extended for large deformations and numerically implemented in a commercial finite element software. Specific numerical model problems are presented in order to demonstrate the ability of the approach to regularize anisotropic damage fields for large deformations and eliminate mesh dependency..

Medienart:

E-Artikel

Erscheinungsjahr:

2020

Erschienen:

2020

Enthalten in:

Zur Gesamtaufnahme - volume:10

Enthalten in:

Applied Sciences - 10(2020), 24, p 9142

Sprache:

Englisch

Beteiligte Personen:

Ozgur Aslan [VerfasserIn]
Emin Bayraktar [VerfasserIn]

Links:

doi.org [kostenfrei]
doaj.org [kostenfrei]
www.mdpi.com [kostenfrei]
Journal toc [kostenfrei]

Themen:

Biology (General)
Chemistry
Damage
Engineering (General). Civil engineering (General)
Finite elements
Physics
Single crystals
Strain gradients
T
Technology

doi:

10.3390/app10249142

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

DOAJ01422951X