Isoform of fibronectin mediates bone loss in patients with primary biliary cirrhosis by suppressing bone formation / Nina Kawelke, Anke Bentmann, Norman Hackl, Hans-Dieter Hager, Peter Feick, Anne Geursen, Manfred V. Singer, and Inaam A. Nakchbandi

Osteoporosis is a major cause of morbidity and decreased quality of life in patients with chronic cholestatic liver disease. It is established that this osteoporosis results from decreased bone formation, but the mechanisms for the interaction between liver and bone remain elusive. The aim of this study was to test the hypothesis that an increase in the production of cellular fibronectins during liver disease may result in decreased osteoblast-mediated mineralization and thus explain the decrease in bone formation. We performed a prospective cross-sectional study in patients with primary biliary cirrhosis and matched controls, followed by experiments on human and mouse osteoblasts in culture and injections in mice in vivo. In patients with primary biliary cirrhosis, the oncofetal domain of fibronectin correlated significantly with the decrease in osteocalcin, a marker of bone formation (r = -0.57, p < 0.05). In vitro, amniotic fluid fibronectin (aFN) containing mainly the oncofetal domain and EIIIA domain resulted in decreased osteoblast-mediated mineralization in human osteoblasts (69% decrease at 100 microg/ml; p < 0.01) and mouse osteoblasts (71% decrease; p < 0.05). Removing the EIIIA domain from aFN similarly suppressed mineralization by osteoblasts (78% decrease; p < 0.05). Injection of labeled aFN in mice showed that it infiltrates the bone, and its administration over 10 days resulted in decreased trabecular BMD (17% drop; p < 0.05), mineralizing surface (30% drop; p < 0.005), and number of osteoblasts (45% drop; p < 0.05). Increased production of a fibronectin isoform containing the oncofetal domain and its release in the circulation in patients with primary biliary cirrhosis is at least partially responsible for the decrease in bone formation seen in these patients. This establishes that a molecule that has thus far been viewed as an extracellular matrix protein exerts hormone-like actions..

Medienart:

E-Artikel

Erscheinungsjahr:

March 17, 2008

2008

Erschienen:

March 17, 2008

Enthalten in:

Zur Gesamtaufnahme - volume:23

Enthalten in:

Journal of bone and mineral research - 23(2008), 8, Seite 1278-1286

Sprache:

Englisch

Beteiligte Personen:

Kawelke, Nina [VerfasserIn]
Bentmann, Anke, 1980- [VerfasserIn]
Hackl, Norman J. [VerfasserIn]
Hager, Hans-Dieter [VerfasserIn]
Feick, Peter, 1956- [VerfasserIn]
Geursen, Anne, 1978- [VerfasserIn]
Singer, Manfred V., 1945- [VerfasserIn]
Nakchbandi, Inaam, 1967- [VerfasserIn]

Links:

Volltext [lizenzpflichtig]
Volltext [lizenzpflichtig]

Themen:

Amniotic Fluid
Animals
Biomarkers
Bone Density
Bone Resorption
Calcification, Physiologic
Cells, Cultured
Female
Fibronectins
Humans
Injections, Intraperitoneal
Liver Cirrhosis, Biliary
Male
Mice
Middle Aged
Osteoblasts
Osteocalcin
Osteogenesis
Protein Isoforms
Tibia

Anmerkungen:

Gesehen am 30.06.2021

Umfang:

9

doi:

10.1359/jbmr.080313

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

1761588494