Polymer Microarrays Rapidly Identify Competitive Adsorbents of Virus-like Particles (VLPs)

The emergence of SARS-CoV-2 highlights the global need for platform technologies to enable rapid development of diagnostics, vaccines, treatments, and personal protective equipment (PPE). However, many current technologies require the detailed mechanistic knowledge of specific material-virion interactions before they can be employed, for example to aid in the purification of vaccine components, or in design of more effective PPE. Here we show that an adaption of polymer micro array method for screening bacterial-surface interactions allows for screening of polymers for desirable material-viron interactions. Non-pathogenic virus like particlesincluding fluorophores are exposed to the arrays in aqueous buffer as a simple model of virons carried to the surface in saliva/sputum. Competitive binding of Lassa and Rubella particles is measured to probe the relative binding properties of a selection of copolymers. This provides the first step in the development of a method for discovery of novel materials with promise for viral binding, with the next being development of this method to assess absolute viral adsorption and assessment of the attenuation of the activity of live virus which we propose would be part of a material scale up step carried out in biological laboratory safety level 4 facilities and the use of more complex media to represent biological fluids..

Medienart:

Preprint

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

chemRxiv.org - (2021) vom: 18. Nov. Zur Gesamtaufnahme - year:2021

Sprache:

Englisch

Beteiligte Personen:

Blok, Andrew J. [VerfasserIn]
Gurnani, Pratik [VerfasserIn]
Xenopoulos, Alex [VerfasserIn]
Burroughs, Laurence [VerfasserIn]
Duncan, Joshua [VerfasserIn]
Urbanowicz, Richard [VerfasserIn]
Tsoleridis, Theocharis [VerfasserIn]
Müller, Helena [VerfasserIn]
Strecker, Thomas [VerfasserIn]
Ball, Jonathan [VerfasserIn]
Alexander, Cameron [VerfasserIn]
Alexander, Morgan [VerfasserIn]

Links:

Volltext [kostenfrei]

Themen:

540
Chemistry

doi:

10.26434/chemrxiv.12966725

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

XCH019163266