Nanogel delivery systems for cationic peptides : More than a 'One Size Fits All' solution
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved..
Self-assembled hyaluronic acid-based nanogels are versatile drug carriers due to their biodegradable nature and gentle preparation conditions, making them particularly interesting for delivery of peptide therapeutics. This study aims to elucidate the relation between peptide structure and encapsulation in a nanogel. Key peptide properties that affect encapsulation in octenyl succinic anhydride-modified hyaluronic acid nanogels were identified as we explored the effect on nanogel characteristics using 12 peptides with varying charge and hydrophobicity. The size and surface properties of the microfluidics-assembled peptide-loaded nanogels were evaluated using dynamic light scattering, laser Doppler electrophoresis, and small angle neutron scattering. Additionally, the change in peptide secondary structure upon encapsulation in nanogels, their release from the nanogels, and the in vitro antimicrobial activity were assessed. In conclusion, the more hydrophobic peptides showed stronger binding to the nanogel carrier and localized internally rather than on the surface of the nanogel, resulting in more spherical nanogels with smoother surfaces and slower release profiles. In contrast, cationic and hydrophilic peptides localized at the nanogel surface resulting in fluffier nanogel structures and quick and more complete release in biorelevant medium. These findings emphasize that the advantages of nanogel delivery systems for different applications depend on the therapeutic peptide properties.
Media Type: |
Electronic Article |
---|
Year of Publication: |
2024 |
---|---|
Publication: |
2024 |
Contained In: |
To Main Record - volume:663 |
---|---|
Contained In: |
Journal of colloid and interface science - 663(2024) vom: 01. März, Seite 449-457 |
Language: |
English |
---|
Contributors: |
Kłodzińska, Sylvia N [Author] |
---|
Links: |
---|
Notes: |
Date Completed 22.03.2024 Date Revised 22.03.2024 published: Print-Electronic Citation Status MEDLINE |
---|
doi: |
10.1016/j.jcis.2024.02.101 |
---|
funding: |
|
---|---|
Supporting institution / Project title: |
|
PPN (Catalogue-ID): |
NLM369072146 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | NLM369072146 | ||
003 | DE-627 | ||
005 | 20240323000936.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240229s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jcis.2024.02.101 |2 doi | |
028 | 5 | 2 | |a pubmed24n1341.xml |
035 | |a (DE-627)NLM369072146 | ||
035 | |a (NLM)38417296 | ||
035 | |a (PII)S0021-9797(24)00345-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kłodzińska, Sylvia N |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nanogel delivery systems for cationic peptides |b More than a 'One Size Fits All' solution |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ƒaComputermedien |b c |2 rdamedia | ||
338 | |a ƒa Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Date Completed 22.03.2024 | ||
500 | |a Date Revised 22.03.2024 | ||
500 | |a published: Print-Electronic | ||
500 | |a Citation Status MEDLINE | ||
520 | |a Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. | ||
520 | |a Self-assembled hyaluronic acid-based nanogels are versatile drug carriers due to their biodegradable nature and gentle preparation conditions, making them particularly interesting for delivery of peptide therapeutics. This study aims to elucidate the relation between peptide structure and encapsulation in a nanogel. Key peptide properties that affect encapsulation in octenyl succinic anhydride-modified hyaluronic acid nanogels were identified as we explored the effect on nanogel characteristics using 12 peptides with varying charge and hydrophobicity. The size and surface properties of the microfluidics-assembled peptide-loaded nanogels were evaluated using dynamic light scattering, laser Doppler electrophoresis, and small angle neutron scattering. Additionally, the change in peptide secondary structure upon encapsulation in nanogels, their release from the nanogels, and the in vitro antimicrobial activity were assessed. In conclusion, the more hydrophobic peptides showed stronger binding to the nanogel carrier and localized internally rather than on the surface of the nanogel, resulting in more spherical nanogels with smoother surfaces and slower release profiles. In contrast, cationic and hydrophilic peptides localized at the nanogel surface resulting in fluffier nanogel structures and quick and more complete release in biorelevant medium. These findings emphasize that the advantages of nanogel delivery systems for different applications depend on the therapeutic peptide properties | ||
650 | 4 | |a Journal Article | |
650 | 4 | |a Biopolymer | |
650 | 4 | |a Cationic peptides | |
650 | 4 | |a Drug delivery | |
650 | 4 | |a Formulation | |
650 | 4 | |a Nanogel | |
650 | 4 | |a Self-assembly | |
650 | 4 | |a Structure | |
650 | 7 | |a polyethylene glycol polyethyleneimine nanogel |2 NLM | |
650 | 7 | |a Nanogels |2 NLM | |
650 | 7 | |a Hyaluronic Acid |2 NLM | |
650 | 7 | |a 9004-61-9 |2 NLM | |
650 | 7 | |a Polyethylene Glycols |2 NLM | |
650 | 7 | |a 3WJQ0SDW1A |2 NLM | |
650 | 7 | |a Peptides |2 NLM | |
650 | 7 | |a Polyethyleneimine |2 NLM | |
650 | 7 | |a 9002-98-6 |2 NLM | |
700 | 1 | |a Wang, Qiuyu |e verfasserin |4 aut | |
700 | 1 | |a Molchanova, Natalia |e verfasserin |4 aut | |
700 | 1 | |a Mahmoudi, Najet |e verfasserin |4 aut | |
700 | 1 | |a Vallooran, Jijo J |e verfasserin |4 aut | |
700 | 1 | |a Hansen, Paul R |e verfasserin |4 aut | |
700 | 1 | |a Jenssen, Håvard |e verfasserin |4 aut | |
700 | 1 | |a Mørck Nielsen, Hanne |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of colloid and interface science |d 1966 |g 663(2024) vom: 01. März, Seite 449-457 |w (DE-627)266891136 |x 1095-7103 |7 nnns |
773 | 1 | 8 | |g volume:663 |g year:2024 |g day:01 |g month:03 |g pages:449-457 |
856 | 4 | 0 | |u http://dx.doi.org/10.1016/j.jcis.2024.02.101 |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_NLM | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2411 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 663 |j 2024 |b 01 |c 03 |h 449-457 |