Chemical changes in childhood obesity blood as a marker of the disease. A Raman-based machine learning study
Copyright © 2023 Elsevier B.V. All rights reserved..
Obesity in children is a global problem, leading to different medical conditions that may contribute to metabolic syndrome and increase the risk of diabetes, dyslipidemia, hypertension, and cardiovascular diseases in future health. Metabolic disorders are the results of the body's chemical process. The changes in the chemical compositions could be determined by Raman spectroscopy. Therefore, in this study, we measured blood collected from children with obesity to show chemical changes caused by obesity disease. Moreover, we will also show characteristic Raman peaks/regions, which could be used as a marker of obesity, not other metabolic syndromes. Children with obesity had higher glucose levels, proteins, and lipids than the control ones. Furthermore, it was noticed that the ratio between CO and C-H is 0.23 in control patients and 0.31 in children with obesity, as well as the ratio between amide II and amide I was 0.72 in control and 1.15 in obesity, which suggests an imbalance in these two fractions in childhood obesity. PCA with discrimination analyses showed that the accuracy, selectivity, and specificity of Raman spectroscopy in differentiation between childhood obesity and healthy children was between 93% and 100%. There is an increased risk of metabolic changes in childhood obesity with higher glucose levels, lipids, and proteins in children with obesity. Also, there were differences in the ratio between proteins and lipids functional groups and glucose, amide II, and amide I vibrations as a marker of obesity. The results of the study offer valuable insights into potential alterations in protein structure and lipid composition in children with obesity, emphasizing the importance of considering metabolic changes beyond traditional anthropometric, measurements.
Media Type: |
Electronic Article |
---|
Year of Publication: |
2023 |
---|---|
Publication: |
2023 |
Contained In: |
To Main Record - volume:233 |
---|---|
Contained In: |
Journal of pharmaceutical and biomedical analysis - 233(2023) vom: 05. Sept., Seite 115445 |
Language: |
English |
---|
Contributors: |
Guleken, Zozan [Author] |
---|
Links: |
---|
Keywords: |
Biomolecular Structure |
---|
Notes: |
Date Completed 12.06.2023 Date Revised 12.06.2023 published: Print-Electronic Citation Status MEDLINE |
---|
doi: |
10.1016/j.jpba.2023.115445 |
---|
funding: |
|
---|---|
Supporting institution / Project title: |
|
PPN (Catalogue-ID): |
NLM357120019 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | NLM357120019 | ||
003 | DE-627 | ||
005 | 20231226071915.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231226s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jpba.2023.115445 |2 doi | |
028 | 5 | 2 | |a pubmed24n1190.xml |
035 | |a (DE-627)NLM357120019 | ||
035 | |a (NLM)37209495 | ||
035 | |a (PII)S0731-7085(23)00214-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Guleken, Zozan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Chemical changes in childhood obesity blood as a marker of the disease. A Raman-based machine learning study |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ƒaComputermedien |b c |2 rdamedia | ||
338 | |a ƒa Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Date Completed 12.06.2023 | ||
500 | |a Date Revised 12.06.2023 | ||
500 | |a published: Print-Electronic | ||
500 | |a Citation Status MEDLINE | ||
520 | |a Copyright © 2023 Elsevier B.V. All rights reserved. | ||
520 | |a Obesity in children is a global problem, leading to different medical conditions that may contribute to metabolic syndrome and increase the risk of diabetes, dyslipidemia, hypertension, and cardiovascular diseases in future health. Metabolic disorders are the results of the body's chemical process. The changes in the chemical compositions could be determined by Raman spectroscopy. Therefore, in this study, we measured blood collected from children with obesity to show chemical changes caused by obesity disease. Moreover, we will also show characteristic Raman peaks/regions, which could be used as a marker of obesity, not other metabolic syndromes. Children with obesity had higher glucose levels, proteins, and lipids than the control ones. Furthermore, it was noticed that the ratio between CO and C-H is 0.23 in control patients and 0.31 in children with obesity, as well as the ratio between amide II and amide I was 0.72 in control and 1.15 in obesity, which suggests an imbalance in these two fractions in childhood obesity. PCA with discrimination analyses showed that the accuracy, selectivity, and specificity of Raman spectroscopy in differentiation between childhood obesity and healthy children was between 93% and 100%. There is an increased risk of metabolic changes in childhood obesity with higher glucose levels, lipids, and proteins in children with obesity. Also, there were differences in the ratio between proteins and lipids functional groups and glucose, amide II, and amide I vibrations as a marker of obesity. The results of the study offer valuable insights into potential alterations in protein structure and lipid composition in children with obesity, emphasizing the importance of considering metabolic changes beyond traditional anthropometric, measurements | ||
650 | 4 | |a Journal Article | |
650 | 4 | |a Biomolecular Structure | |
650 | 4 | |a Blood serum profile | |
650 | 4 | |a Chemometrics | |
650 | 4 | |a Childhood obesity | |
650 | 4 | |a Raman spectroscopy | |
650 | 4 | |a Secondary Protein Structure | |
650 | 7 | |a Lipids |2 NLM | |
650 | 7 | |a Glucose |2 NLM | |
650 | 7 | |a IY9XDZ35W2 |2 NLM | |
700 | 1 | |a Ceylan, Zeynep |e verfasserin |4 aut | |
700 | 1 | |a Çeçen, Serpil |e verfasserin |4 aut | |
700 | 1 | |a Jakubczyk, Dorota |e verfasserin |4 aut | |
700 | 1 | |a Jakubczyk, Pawel |e verfasserin |4 aut | |
700 | 1 | |a Depciuch, Joanna |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of pharmaceutical and biomedical analysis |d 1983 |g 233(2023) vom: 05. Sept., Seite 115445 |w (DE-627)30271801X |x 1873-264X |7 nnns |
773 | 1 | 8 | |g volume:233 |g year:2023 |g day:05 |g month:09 |g pages:115445 |
856 | 4 | 0 | |u http://dx.doi.org/10.1016/j.jpba.2023.115445 |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_NLM | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 233 |j 2023 |b 05 |c 09 |h 115445 |