Time-of-flight and noise-correlation-inspired algorithms for full-field shear-wave elastography using digital holography

SIGNIFICANCE: Quantitative stiffness information can be a powerful aid for tumor or fibrosis diagnosis. Currently, very promising elastography approaches developed for non-contact biomedical imaging are based on transient shear-waves imaging. Transient elastography offers quantitative stiffness information by tracking the propagation of a wave front. The most common method used to compute stiffness from the acquired propagation movie is based on shear-wave time-of-flight calculations.

AIM: We introduce an approach to transient shear-wave elastography with spatially coherent sources, able to yield full-field quantitative stiffness maps with reduced artifacts compared to typical artifacts observed in time-of-flight.

APPROACH: A noise-correlation algorithm developed for passive elastography is adapted to spatially coherent narrow or any band sources. This noise-correlation-inspired (NCi) method is employed in parallel with a classic time-of-flight approach. Testing is done on simulation images, experimental validation is conducted with a digital holography setup on controlled homogeneous samples, and full-field quantitative stiffness maps are presented for heterogeneous samples and ex-vivo biological tissues.

RESULTS: The NCi approach is first validated on simulations images. Stiffness images processed by the NCi approach on simulated inclusions display significantly less artifacts than with a time-of-flight reconstruction. The adaptability of the NCi algorithm to narrow or any band shear-wave sources was tested successfully. Experimental testing on homogeneous samples demonstrates similar values for both the time-of-flight and the NCi approach. Soft inclusions in agarose sample could be resolved using the NCi method and feasibility on ex-vivo biological tissues is presented.

CONCLUSIONS: The presented NCi approach was successful in computing quantitative full-field stiffness maps with narrow and broadband source signals on simulation and experimental images from a digital holography setup. Results in heterogeneous media show that the NCi approach could provide stiffness maps with less artifacts than with time-of-flight, demonstrating that a NCi algorithm is a promising approach for shear-wave transient elastography with spatially coherent sources.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:26

Enthalten in:

Journal of biomedical optics - 26(2021), 8 vom: 08. Aug.

Sprache:

Englisch

Beteiligte Personen:

Marmin, Agathe [VerfasserIn]
Laloy-Borgna, Gabrielle [VerfasserIn]
Facca, Sybille [VerfasserIn]
Gioux, Sylvain [VerfasserIn]
Catheline, Stefan [VerfasserIn]
Nahas, Amir [VerfasserIn]

Links:

Volltext

Themen:

Elastography
Holography
Journal Article
Noise-correlation
Quantitative
Research Support, Non-U.S. Gov't
Shear-wave
Transient elastography

Anmerkungen:

Date Completed 15.10.2021

Date Revised 15.10.2021

published: Print

Citation Status MEDLINE

doi:

10.1117/1.JBO.26.8.086006

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM329581430