Increasing structural and functional complexity in self-assembled coordination cages

This journal is © The Royal Society of Chemistry..

Progress in metallo-supramolecular chemistry creates potential to synthesize functional nano systems and intelligent materials of increasing complexity. In the past four decades, metal-mediated self-assembly has produced a wide range of structural motifs such as helicates, grids, links, knots, spheres and cages, with particularly the latter ones catching growing attention, owing to their nano-scale cavities. Assemblies serving as hosts allow application as selective receptors, confined reaction environments and more. Recently, the field has made big steps forward by implementing dedicated functionality, e.g. catalytic centres or photoswitches to allow stimuli control. Besides incorporation in homoleptic systems, composed of one type of ligand, desire arose to include more than one function within the same assembly. Inspiration comes from natural enzymes that congregate, for example, a substrate recognition site, an allosteric regulator element and a reaction centre. Combining several functionalities without creating statistical mixtures, however, requires a toolbox of sophisticated assembly strategies. This review showcases the implementation of function into self-assembled cages and devises strategies to selectively form heteroleptic structures. We discuss first examples resulting from a combination of both principles, namely multicomponent multifunctional host-guest complexes, and their potential in application in areas such as sensing, catalysis, and photo-redox systems.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:12

Enthalten in:

Chemical science - 12(2021), 21 vom: 10. Mai, Seite 7269-7293

Sprache:

Englisch

Beteiligte Personen:

Pullen, Sonja [VerfasserIn]
Tessarolo, Jacopo [VerfasserIn]
Clever, Guido H [VerfasserIn]

Links:

Volltext

Themen:

Journal Article
Review

Anmerkungen:

Date Revised 11.11.2023

published: Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1039/d1sc01226f

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM327110848