Genetic mapping of the early responses to salt stress in Arabidopsis thaliana

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd..

Salt stress decreases plant growth prior to significant ion accumulation in the shoot. However, the processes underlying this rapid reduction in growth are still unknown. To understand the changes in salt stress responses through time and at multiple physiological levels, examining different plant processes within a single set-up is required. Recent advances in phenotyping has allowed the image-based estimation of plant growth, morphology, colour and photosynthetic activity. In this study, we examined the salt stress-induced responses of 191 Arabidopsis accessions from 1 h to 7 days after treatment using high-throughput phenotyping. Multivariate analyses and machine learning algorithms identified that quantum yield measured in the light-adapted state (Fv' /Fm' ) greatly affected growth maintenance in the early phase of salt stress, whereas the maximum quantum yield (QYmax ) was crucial at a later stage. In addition, our genome-wide association study (GWAS) identified 770 loci that were specific to salt stress, in which two loci associated with QYmax and Fv' /Fm' were selected for validation using T-DNA insertion lines. We characterized an unknown protein kinase found in the QYmax locus that reduced photosynthetic efficiency and growth maintenance under salt stress. Understanding the molecular context of the candidate genes identified will provide valuable insights into the early plant responses to salt stress. Furthermore, our work incorporates high-throughput phenotyping, multivariate analyses and GWAS, uncovering details of temporal stress responses and identifying associations across different traits and time points, which are likely to constitute the genetic components of salinity tolerance.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:107

Enthalten in:

The Plant journal : for cell and molecular biology - 107(2021), 2 vom: 08. Juli, Seite 544-563

Sprache:

Englisch

Beteiligte Personen:

Awlia, Mariam [VerfasserIn]
Alshareef, Nouf [VerfasserIn]
Saber, Noha [VerfasserIn]
Korte, Arthur [VerfasserIn]
Oakey, Helena [VerfasserIn]
Panzarová, Klára [VerfasserIn]
Trtílek, Martin [VerfasserIn]
Negrão, Sónia [VerfasserIn]
Tester, Mark [VerfasserIn]
Julkowska, Magdalena M [VerfasserIn]

Links:

Volltext

Themen:

Arabidopsis
Genome-wide association studies
High-throughput phenotyping
Journal Article
Multivariate analysis
Salt stress

Anmerkungen:

Date Completed 29.11.2021

Date Revised 29.11.2021

published: Print-Electronic

figshare: 10.6084/m9.figshare.12173382

Citation Status MEDLINE

doi:

10.1111/tpj.15310

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM325157200