GLUT1 Expression in Tumor-Associated Neutrophils Promotes Lung Cancer Growth and Resistance to Radiotherapy

©2021 American Association for Cancer Research..

Neutrophils are the most abundant circulating leucocytes and are essential for innate immunity. In cancer, pro- or antitumor properties have been attributed to tumor-associated neutrophils (TAN). Here, focusing on TAN accumulation within lung tumors, we identify GLUT1 as an essential glucose transporter for their tumor supportive behavior. Compared with normal neutrophils, GLUT1 and glucose metabolism increased in TANs from a mouse model of lung adenocarcinoma. To elucidate the impact of glucose uptake on TANs, we used a strategy with two recombinases, dissociating tumor initiation from neutrophil-specific Glut1 deletion. Loss of GLUT1 accelerated neutrophil turnover in tumors and reduced a subset of TANs expressing SiglecF. In the absence of GLUT1 expression by TANs, tumor growth was diminished and the efficacy of radiotherapy was augmented. Our results demonstrate the importance of GLUT1 in TANs, which may affect their pro- versus antitumor behavior. These results also suggest targeting metabolic vulnerabilities to favor antitumor neutrophils. SIGNIFICANCE: Lung tumor support and radiotherapy resistance depend on GLUT1-mediated glucose uptake in tumor-associated neutrophils, indicating that metabolic vulnerabilities should be considered to target both tumor cells as well as innate immune cells. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2345/F1.large.jpg.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:81

Enthalten in:

Cancer research - 81(2021), 9 vom: 01. Mai, Seite 2345-2357

Sprache:

Englisch

Beteiligte Personen:

Ancey, Pierre-Benoit [VerfasserIn]
Contat, Caroline [VerfasserIn]
Boivin, Gael [VerfasserIn]
Sabatino, Silvia [VerfasserIn]
Pascual, Justine [VerfasserIn]
Zangger, Nadine [VerfasserIn]
Perentes, Jean Yannis [VerfasserIn]
Peters, Solange [VerfasserIn]
Abel, E Dale [VerfasserIn]
Kirsch, David G [VerfasserIn]
Rathmell, Jeffrey C [VerfasserIn]
Vozenin, Marie-Catherine [VerfasserIn]
Meylan, Etienne [VerfasserIn]

Links:

Volltext

Themen:

Glucose Transporter Type 1
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
SLC2A1 protein, human
Slc2a1 protein, mouse

Anmerkungen:

Date Completed 17.09.2021

Date Revised 02.04.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1158/0008-5472.CAN-20-2870

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM32309693X