Nanostraw-Assisted Cellular Injection of Fluorescent Nanodiamonds via Direct Membrane Opening

© 2021 The Authors. Small published by Wiley-VCH GmbH..

Due to their stable fluorescence, biocompatibility, and amenability to functionalization, fluorescent nanodiamonds (FND) are promising materials for long term cell labeling and tracking. However, transporting them to the cytosol remains a major challenge, due to low internalization efficiencies and endosomal entrapment. Here, nanostraws in combination with low voltage electroporation pulses are used to achieve direct delivery of FND to the cytosol. The nanostraw delivery leads to efficient and rapid FND transport into cells compared to when incubating cells in a FND-containing medium. Moreover, whereas all internalized FND delivered by incubation end up in lysosomes, a significantly larger proportion of nanostraw-injected FND are in the cytosol, which opens up for using FND as cellular probes. Furthermore, in order to answer the long-standing question in the field of nano-biology regarding the state of the cell membrane on hollow nanostructures, live cell stimulated emission depletion (STED) microscopy is performed to image directly the state of the membrane on nanostraws. The time-lapse STED images reveal that the cell membrane opens entirely on top of nanostraws upon application of gentle electrical pulses, which supports the hypothesis that many FND are delivered directly to the cytosol, avoiding endocytosis and lysosomal entrapment.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:17

Enthalten in:

Small (Weinheim an der Bergstrasse, Germany) - 17(2021), 7 vom: 01. Feb., Seite e2006421

Sprache:

Englisch

Beteiligte Personen:

Hebisch, Elke [VerfasserIn]
Hjort, Martin [VerfasserIn]
Volpati, Diogo [VerfasserIn]
Prinz, Christelle N [VerfasserIn]

Links:

Volltext

Themen:

Cell transfection
Electroporation
Fluorescent Dyes
Journal Article
Nanodiamonds
Nanostraws
Research Support, Non-U.S. Gov't
STED microscopy

Anmerkungen:

Date Completed 09.07.2021

Date Revised 09.07.2021

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1002/smll.202006421

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM320638979