Dexmedetomidine attenuates sevoflurane‑induced neurocognitive impairment through α2‑adrenoceptors

It has been reported that sevoflurane induces neurotoxicity in the developing brain. Dexmedetomidine is an α2 adrenoceptor agonist used for the prevention of sevoflurane‑induced agitation in children in clinical practice. The aim of the present study was to determine whether dexmedetomidine could prevent sevoflurane‑induced neuroapoptosis, neuroinflammation, oxidative stress and neurocognitive impairment. Additionally, the involvement of α2 adrenoceptors in the neuroprotective effect of dexmedetomidine was assessed. Postnatal day (P)6 C57BL/6 male mice were randomly divided into four groups (n=6 in each group). Mice were pretreated with dexmedetomidine, either alone or together with yohimbine, an α2 adrenoceptor inhibitor, then exposed to 3% sevoflurane in 25% oxygen. Control mice either received normal saline alone or with sevoflurane exposure. Following sevoflurane exposure, the expression of cleaved caspase‑3 was detected by immunohistochemistry in hippocampal tissue sections. In addition, the levels of tumor necrosis factor‑α (TNF‑α), interleukin (IL)‑1β, IL‑6 and malondialdehyde, as well as superoxide dismutase (SOD) activity in the hippocampus were measured. At P35, the learning and memory abilities were assessed in each mouse using a Morris water maze test. Dexmedetomidine significantly decreased the expression of activated caspase‑3 following sevoflurane exposure. Moreover, dexmedetomidine significantly decreased the levels of TNF‑α, IL‑1β and IL‑6 in the hippocampus. SOD activity also increased in a dose‑dependent manner in dexmedetomidine‑treated mice. MDA decreased in a dose‑dependent manner in dexmedetomidine‑treated mice. Lastly, sevoflurane‑induced learning and memory impairment was reversed by dexmedetomidine treatment. By contrast, co‑administration of yohimbine significantly attenuated the neuroprotective effects of dexmedetomidine. These findings suggested that dexmedetomidine exerted a neuroprotective effect against sevoflurane‑induced apoptosis, inflammation, oxidative stress and neurocognitive impairment, which was mediated, at least in part, by α2 adrenoceptors.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:23

Enthalten in:

Molecular medicine reports - 23(2021), 1 vom: 14. Jan.

Sprache:

Englisch

Beteiligte Personen:

Zhang, Yufeng [VerfasserIn]
Li, Mao [VerfasserIn]
Cui, Enhui [VerfasserIn]
Zhang, Hao [VerfasserIn]
Zhu, Xiaozhong [VerfasserIn]
Zhou, Jing [VerfasserIn]
Yan, Ming [VerfasserIn]
Sun, Jian [VerfasserIn]

Links:

Volltext

Themen:

α2 adrenoceptor
2Y49VWD90Q
38LVP0K73A
4Y8F71G49Q
67VB76HONO
Adrenergic alpha-2 Receptor Antagonists
Casp3 protein, mouse
Caspase 3
Dexmedetomidine
EC 1.15.1.1
EC 3.4.22.-
Inflammation
Journal Article
Malondialdehyde
Neuroapoptosis
Oxidative stress
Sevoflurane
Superoxide Dismutase
Yohimbine

Anmerkungen:

Date Completed 19.05.2021

Date Revised 30.06.2021

published: Print-Electronic

Citation Status MEDLINE

doi:

10.3892/mmr.2020.11676

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM317466771