Dynamic tracking of microvascular hemoglobin content for continuous perfusion monitoring in the intensive care unit : pilot feasibility study

© 2020. Springer Nature B.V..

PURPOSE: There is a need for bedside methods to monitor oxygen delivery in the microcirculation. Near-infrared spectroscopy commonly measures tissue oxygen saturation, but does not reflect the time-dependent variability of microvascular hemoglobin content (MHC) that attempts to match oxygen supply with demand. The objective of this study is to determine the feasibility of MHC monitoring in critically ill patients using high-resolution near-infrared spectroscopy to assess perfusion in the peripheral microcirculation.

METHODS: Prospective observational cohort of 36 patients admitted within 48 h at a tertiary intensive care unit. Perfusion was measured on the quadriceps, biceps, and/or deltoid, using the temporal change in optical density at the isosbestic wavelength of hemoglobin (798 nm). Continuous wavelet transform was applied to the hemoglobin signal to delineate frequency ranges corresponding to physiological oscillations in the cardiovascular system.

RESULTS: 31/36 patients had adequate signal quality for analysis, most commonly affected by motion artifacts. MHC signal demonstrates inter-subject heterogeneity in the cohort, indicated by different patterns of variability and frequency composition. Signal characteristics were concordant between muscle groups in the same patient, and correlated with systemic hemoglobin levels and oxygen saturation. Signal power was lower for patients receiving vasopressors, but not correlated with mean arterial pressure. Mechanical ventilation directly impacts MHC in peripheral tissue.

CONCLUSION: MHC can be measured continuously in the ICU with high-resolution near-infrared spectroscopy, and reflects the dynamic variability of hemoglobin distribution in the microcirculation. Results suggest this novel hemodynamic metric should be further evaluated for diagnosing microvascular dysfunction and monitoring peripheral perfusion.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:35

Enthalten in:

Journal of clinical monitoring and computing - 35(2021), 6 vom: 26. Dez., Seite 1453-1465

Sprache:

Englisch

Beteiligte Personen:

Mendelson, Asher A [VerfasserIn]
Rajaram, Ajay [VerfasserIn]
Bainbridge, Daniel [VerfasserIn]
Lawrence, Keith St [VerfasserIn]
Bentall, Tracey [VerfasserIn]
Sharpe, Michael [VerfasserIn]
Diop, Mamadou [VerfasserIn]
Ellis, Christopher G [VerfasserIn]
Canadian Critical Care Translational Biology Group [VerfasserIn]

Links:

Volltext

Themen:

Critical care
Hemodynamic monitor
Hemoglobins
Journal Article
Microcirculation
Near-infrared spectroscopy
Observational Study
Wavelet analysis

Anmerkungen:

Date Completed 07.01.2022

Date Revised 12.08.2022

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1007/s10877-020-00611-x

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM31673750X