Modeling the ternary chalcogenide Na2MoSe4 from first-principles

In the ongoing pursuit of inorganic compounds suitable for solid-state devices, transition metal chalcogenides have received heightened attention due to their physical and chemical properties. Recently, alkali-ion transition metal chalcogenides have been explored as promising candidates to be applied in optoelectronics, photovoltaics and energy storage devices. In this work, we present a theoretical study of sodium molybdenum selenide (Na2MoSe4). First-principles computations were performed on a set of hypothetical crystal structures to determine the ground state and electronic properties of Na2MoSe4. We find that the equilibrium structure of Na2MoSe4 is a simple orthorhombic (oP) lattice, with space group Pnma, as evidenced by thermodynamics. Finally, meta-GGA computations were performed to model the band structure of oP Na2MoSe4 at a predictive level. We employ the Tran-Blaha modified Becke-Johnson potential to demonstrate that oP Na2MoSe4 has a direct bandgap at the Γ point that is suitable for optoelectronics. Our results provide a foundation for future studies concerned with the modeling of inorganic and hybrid organic-inorganic materials chemically analogous to Na2MoSe4.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:33

Enthalten in:

Journal of physics. Condensed matter : an Institute of Physics journal - 33(2021), 2 vom: 13. Jan., Seite 025501

Sprache:

Englisch

Beteiligte Personen:

Palos, Etienne [VerfasserIn]
Reyes-Serrato, Armando [VerfasserIn]
Alonso-Nuñez, Gabriel [VerfasserIn]
Sánchez, J Guerrero [VerfasserIn]

Links:

Volltext

Themen:

Journal Article

Anmerkungen:

Date Revised 29.01.2022

published: Print

Citation Status PubMed-not-MEDLINE

doi:

10.1088/1361-648X/abaf91

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM316249831