Photoprotection and optimization of sucrose usage contribute to faster recovery of photosynthesis after water deficit at high temperatures in wheat

© 2020 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society..

Plants are increasingly exposed to events of elevated temperature and water deficit, which threaten crop productivity. Understanding the ability to rapidly recover from abiotic stress, restoring carbon assimilation and biomass production, is important to unravel crop climate resilience. This study compared the photosynthetic performance of two Triticum aestivum L. cultivars, Sokoll and Paragon, adapted to the climate of Mexico and UK, respectively, exposed to 1-week water deficit and high temperatures, in isolation or combination. Measurements included photosynthetic assimilation rate, stomatal conductance, in vitro activities of Rubisco (EC 4.1.1.39) and invertase (INV, EC 3.2.1.26), antioxidant capacity and chlorophyll a fluorescence. In both genotypes, under elevated temperatures and water deficit (WD38°C), the photosynthetic limitations were mainly due to stomatal restrictions and to a decrease in the electron transport rate. Chlorophyll a fluorescence parameters clearly indicate differences between the two genotypes in the photoprotection when subjected to WD38°C and showed faster recovery of Paragon after stress relief. The activity of the cytosolic invertase (CytINV) under these stress conditions was strongly related to the fast photosynthesis recovery of Paragon. Taken together, the results suggest that optimal sucrose export/utilization and increased photoprotection of the electron transport machinery are important components to limit yield fluctuations due to water shortage and elevated temperatures.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:172

Enthalten in:

Physiologia plantarum - 172(2021), 2 vom: 03. Juni, Seite 615-628

Sprache:

Englisch

Beteiligte Personen:

Correia, Pedro M P [VerfasserIn]
da Silva, Anabela B [VerfasserIn]
Roitsch, Thomas [VerfasserIn]
Carmo-Silva, Elizabete [VerfasserIn]
Marques da Silva, Jorge [VerfasserIn]

Links:

Volltext

Themen:

059QF0KO0R
1406-65-1
57-50-1
Chlorophyll
Chlorophyll A
Journal Article
Sucrose
Water
YF5Q9EJC8Y

Anmerkungen:

Date Completed 31.05.2021

Date Revised 31.05.2021

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1111/ppl.13227

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM315803436