High-precision processing method for an aluminum mirror assisted with a femtosecond laser

At present, aluminum-based optical payloads are widely used in the aviation and aerospace field, and the demand for aluminum mirrors has become increasingly urgent in the visible light region. The main processing of an aluminum alloy mirror involves single-point diamond turning followed by a combined polishing process. Among these processes, magnetorheological finishing (MRF) is an important method for improving a surface figure. During the MRF process, excessive impurity contaminants are introduced into the surface of the aluminum mirror, thereby reducing surface reflectivity. In this paper, theoretical analysis and time-of-flight secondary ion mass spectrometry depth profiling were used to obtain the cause of pollution, and the process scheme of femtosecond laser cleaning was proposed. After verifying the feasibility, a new, to the best of our knowledge, process route was implemented on a Φ50mm aluminum mirror. Finally, the surface figure of RMS 0.022λ and the surface roughness of Ra 3.24 nm were obtained. In addition, reflectance in the visible light and near-infrared bands has increased by about 50%.

Medienart:

E-Artikel

Erscheinungsjahr:

2020

Erschienen:

2020

Enthalten in:

Zur Gesamtaufnahme - volume:59

Enthalten in:

Applied optics - 59(2020), 27 vom: 20. Sept., Seite 8335-8341

Sprache:

Englisch

Beteiligte Personen:

Zhao, Tao [VerfasserIn]
Hu, Hao [VerfasserIn]
Peng, Xiao-Qiang [VerfasserIn]
Guan, Chao-Liang [VerfasserIn]
Dai, Yi-Fan [VerfasserIn]
Yong, Jia-Hao [VerfasserIn]
Gan, Zi-Hao [VerfasserIn]

Links:

Volltext

Themen:

Journal Article

Anmerkungen:

Date Revised 28.09.2020

published: Print

Citation Status PubMed-not-MEDLINE

doi:

10.1364/AO.400746

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM315471786