Evaporation-driven self-assembly of binary and ternary colloidal polymer nanocomposites for abrasion resistant applications

Copyright © 2020 Elsevier Inc. All rights reserved..

We harness the self-assembly of aqueous binary latex/silica particle blends during drying to fabricate films segregated by size in the vertical direction. We report for the first time the experimental drying of ternary colloidal dispersions and demonstrate how a ternary film containing additional small latex particles results in improved surface stability and abrasion resistance compared with a binary film. Through atomic force microscopy (AFM) and energy-dispersive X-ray spectroscopy (EDX), we show that the vertical distribution of filler particles and the surface morphologies of the films can be controlled by altering the evaporation rate and silica volume fraction. We report the formation of various silica superstructures at the film surface, which we attribute to a combination of diffusiophoresis and electrostatic interactions between particles. Brownian dynamics simulations of the final stages of solvent evaporation provide further evidence for this formation mechanism. We show how an additional small latex particle population results in an increased abrasion resistance of the film without altering its morphology or hardness. Our work provides a method to produce water-based coatings with enhanced abrasion resistance as well as valuable insights into the mechanisms behind the formation of colloidal superstructures.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:581

Enthalten in:

Journal of colloid and interface science - 581(2021), Pt B vom: 01. Jan., Seite 729-740

Sprache:

Englisch

Beteiligte Personen:

Tinkler, James D [VerfasserIn]
Scacchi, Alberto [VerfasserIn]
Kothari, Harsh R [VerfasserIn]
Tulliver, Hanna [VerfasserIn]
Argaiz, Maialen [VerfasserIn]
Archer, Andrew J [VerfasserIn]
Martín-Fabiani, Ignacio [VerfasserIn]

Links:

Volltext

Themen:

Abrasion resistance
Brownian dynamics
Evaporation driven self-assembly
Journal Article
Latex film formation
Silica nanoparticles
Stratification
Ternary dispersions

Anmerkungen:

Date Revised 16.07.2022

published: Print-Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1016/j.jcis.2020.08.001

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM313924805