Reconstituted and ensiled corn or sorghum grain : Impacts on dietary nitrogen fractions, intake, and digestion sites in young Nellore bulls

Two experiments were conducted: (1) to evaluate the effect of ensiling time and grain source on dietary nitrogen fractions; and (2) to verify the influence of concentrate level, processing method and grain source on intake, microbial efficiency, and digestibility by young Nellore bulls. In Experiment 1, corn and sorghum grains were milled, reconstituted to 35% moisture, and ensiled in a bag silo for 10 different times. There were three replications per ensiling time and grain source. Samples from each replication were analyzed in triplicate for total nitrogen (N), non-protein nitrogen (NPN), soluble N, insoluble N, and neutral detergent insoluble nitrogen (NDIN). In Experiment 2, five Nellore bulls were used in a 5 × 5 Latin square design. Four diets were comprised of 28.4% corn silage, 10.7% supplement, and 60.9% dry ground corn, dry ground sorghum, reconstituted and ensiled corn, or reconstituted and ensiled ground sorghum. An additional diet comprised of 45% corn silage, 10.7% supplement, and 44.3% dry ground corn (Roughage+) was used. Each experimental period lasted 22 days, with an adaptation period of 14 days followed by 5 days of total feces and urine collection and 3 days of collecting omasal samples. Data were analyzed using the MIXED procedure of SAS 9.4. The reconstitution and ensiling process reduced (P < 0.05) the insoluble N fraction, increased (P < 0.05) non-protein nitrogen of corn and sorghum grains, tended (P = 0.052) to increase microbial efficiency, and increased (P < 0.05) intestinal and total digestion of dry matter (DM), organic matter (OM), crude protein (CP), and starch. The concentrate level affected neither (P > 0.05) DM intake nor rumen pH. On the other hand, bulls fed diets based on 72% concentrate showed greater (P < 0.05) DM, OM, and CP digestibility compared with those fed a diet based on 55% concentrate. In addition, animals fed diets based on corn grains (both reconstituted and ensiled or dry) presented greater (P < 0.05) intestinal and total starch digestion compared to those fed sorghum grain. Therefore, the reconstitution process can reduce the insoluble N fraction and increase nutrient availability.

Medienart:

E-Artikel

Erscheinungsjahr:

2020

Erschienen:

2020

Enthalten in:

Zur Gesamtaufnahme - volume:15

Enthalten in:

PloS one - 15(2020), 8 vom: 06., Seite e0237381

Sprache:

Englisch

Beteiligte Personen:

Silva, Breno de Castro [VerfasserIn]
Pacheco, Marcos Vinicius Carneiro [VerfasserIn]
Godoi, Letícia Artuzo [VerfasserIn]
Alhadas, Herlon Menegueli [VerfasserIn]
Pereira, Jéssica Marcela Vieira [VerfasserIn]
Rennó, Luciana Navajas [VerfasserIn]
Detmann, Edenio [VerfasserIn]
Paulino, Pedro Veiga Rodrigues [VerfasserIn]
Schoonmaker, Jon Patrick [VerfasserIn]
Valadares Filho, Sebastião de Campos [VerfasserIn]

Links:

Volltext

Themen:

Journal Article
N762921K75
Nitrogen
Research Support, Non-U.S. Gov't

Anmerkungen:

Date Completed 14.10.2020

Date Revised 14.10.2020

published: Electronic-eCollection

Citation Status MEDLINE

doi:

10.1371/journal.pone.0237381

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM313398445