New Approaches for the Synthesis of Heterocyclic Compounds Corporating Benzo[d]imidazole as Anticancer Agents, Tyrosine, Pim-1 Kinases Inhibitions and their PAINS Evaluations

Copyright© Bentham Science Publishers; For any queries, please email at epubbenthamscience.net..

BACKGROUND: Benzo[d]imidazoles are highly biologically active, in addition, they are considered as a class of heterocyclic compounds with many pharmaceutical applications.

OBJECTIVE: We are aiming in this work to synthesize target molecules that possess not only anti-tumor activities but also kinase inhibitors. The target molecules were obtained starting from the benzo[d]imidazole derivatives followed by their heterocyclization reactions to produce anticancer target molecules.

METHODS: The 1-(1H-benzo[d]imidazol-2-yl)propan-2-one (3) and the ethyl 2-(1H-benzo[d]imidazol-2- yl)acetate (16) were used as the key starting material which reacted with salicylaldehyde to give the corresponding benzo[4,5]imidazo[1,2-a]quinoline derivatives. On the other hand, both of them were reacted with different reagents to give thiophene, pyran and benzo[4,5]imidazo[1,2-c]pyrimidine derivatives. The synthesized compounds were evaluated against the six cancer cell lines A549, HT-29, MKN-45, U87MG, SMMC-7721, and H460 together with inhibitions toward tyrosine kinases, c-Met kinase and prostate cancer cell line PC-3 using the standard MTT assay in vitro, with foretinib as the positive control.

RESULTS: Most of the synthesized compounds exhibited high inhibitions toward the tested cancer cell lines. In addition, tyrosine and Pim-1 kinases inhibitions were performed for the most active compounds where the variation of substituent through the aryl ring and heterocyclic ring afforded compounds with high activities. Our analysis showed that there is a strong correlation between the structure of the compound and the substituents of target molecules.

CONCLUSION: Our present research proved that the synthesized heterocyclic compounds with varieties of substituents have a strong impact on the activity of compounds. The evaluations through different cell lines and tyrosine kinases indicated that the compounds were the excellent candidates as anticancer agents. This could encourage doing further research within this field for the building of compounds with high inhibitions.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:21

Enthalten in:

Anti-cancer agents in medicinal chemistry - 21(2021), 3 vom: 04., Seite 327-342

Sprache:

Englisch

Beteiligte Personen:

Mohareb, Rafat M [VerfasserIn]
Milad, Yara R [VerfasserIn]
Mostafa, Bahaa M [VerfasserIn]
El-Ansary, Reem A [VerfasserIn]

Links:

Volltext

Themen:

Antineoplastic Agents
Benzo[d]midazole
Cytotoxicity
EC 2.7.10.1
EC 2.7.11.1
Heterocyclic Compounds
Imidazoles
Journal Article
PAINS alert
PIM1 protein, human
Protein Kinase Inhibitors
Protein-Tyrosine Kinases
Proto-Oncogene Proteins c-pim-1
Quinoline
Thiophene
Tyrosine kinases

Anmerkungen:

Date Completed 19.10.2021

Date Revised 19.10.2021

published: Print

Citation Status MEDLINE

doi:

10.2174/1871520620666200721111230

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM312748590