Beyond the Polysulfide Shuttle and Lithium Dendrite Formation : Addressing the Sluggish Sulfur Redox Kinetics for Practical High-Energy Li-S Batteries

© 2020 Wiley-VCH GmbH..

Electrolyte modulation simultaneously suppresses polysulfide the shuttle effect and lithium dendrite formation of lithium-sulfur (Li-S) batteries. However, the sluggish S redox kinetics, especially under high S loading and lean electrolyte operation, has been ignored, which dramatically limits the cycle life and energy density of practical Li-S pouch cells. Herein, we demonstrate that a rational combination of selenium doping, core-shell hollow host structure, and fluorinated ether electrolytes enables ultrastable Li stripping/plating and essentially no polysulfide shuttle as well as fast redox kinetics. Thus, high areal capacity (>4 mAh cm-2 ) with excellent cycle stability and Coulombic efficiency were both demonstrated in Li metal anode and thick S cathode (4.5 mg cm-2 ) with a low electrolyte/sulfur ratio (10 μL mg-1 ). This research further demonstrates a durable Li-Se/S pouch cell with high specific capacity, validating the potential practical applications.

Errataetall:

ErratumIn: Angew Chem Int Ed Engl. 2021 Oct 4;60(41):22106. - PMID 34570425

Medienart:

E-Artikel

Erscheinungsjahr:

2020

Erschienen:

2020

Enthalten in:

Zur Gesamtaufnahme - volume:59

Enthalten in:

Angewandte Chemie (International ed. in English) - 59(2020), 40 vom: 28. Sept., Seite 17634-17640

Sprache:

Englisch

Beteiligte Personen:

Zhao, Chen [VerfasserIn]
Xu, Gui-Liang [VerfasserIn]
Zhao, Tianshou [VerfasserIn]
Amine, Khalil [VerfasserIn]

Links:

Volltext

Themen:

Cathodes
High-energy-density batteries
Journal Article
Lithium metal anode
Selenium-sulfur
Solid-electrolyte interphase

Anmerkungen:

Date Revised 27.09.2021

published: Print-Electronic

ErratumIn: Angew Chem Int Ed Engl. 2021 Oct 4;60(41):22106. - PMID 34570425

Citation Status PubMed-not-MEDLINE

doi:

10.1002/anie.202007159

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM312220510