Comparing thermal performance curves across traits : how consistent are they?

© 2019. Published by The Company of Biologists Ltd..

Thermal performance curves (TPCs) are intended to approximate the relationship between temperature and fitness, and are commonly integrated into species distributional models for understanding climate change responses. However, TPCs may vary across traits because selection and environmental sensitivity (plasticity) differ across traits or because the timing and duration of the temperature exposure, here termed time scale, may alter trait variation. Yet, the extent to which TPCs vary temporally and across traits is rarely considered in assessments of climate change responses. Using a common garden approach, we estimated TPCs for standard metabolic rate (SMR), and activity in Drosophila melanogaster at three test temperatures (16, 25 and 30°C), using flies from each of six developmental temperatures (16, 18, 20, 25, 28 and 30°C). We examined the effects of time scale of temperature exposure (minutes/hours versus days/weeks) in altering TPC shape and position, and commonly used descriptors of the TPC: thermal optimum (Topt), thermal limits (Tmin and Tmax) and thermal breadth (Tbr). In addition, we collated previously published estimates of TPCs for fecundity and egg-to-adult viability in D. melanogaster We found that the descriptors of the TPCs varied across traits (egg-to-adult viability, SMR, activity and fecundity), but variation in TPCs within these traits was small across studies when measured at the same time scales. The time scale at which traits were measured contributed to greater variation in TPCs than the observed variance across traits, although the relative importance of time scale differed depending on the trait (activity versus fecundity). Variation in the TPC across traits and time scales suggests that TPCs using single traits may not be an accurate predictor of fitness and thermal adaptation across environments.

Medienart:

E-Artikel

Erscheinungsjahr:

2019

Erschienen:

2019

Enthalten in:

Zur Gesamtaufnahme - volume:222

Enthalten in:

The Journal of experimental biology - 222(2019), Pt 11 vom: 05. Juni

Sprache:

Englisch

Beteiligte Personen:

Kellermann, Vanessa [VerfasserIn]
Chown, Steven L [VerfasserIn]
Schou, Mads Fristrup [VerfasserIn]
Aitkenhead, Ian [VerfasserIn]
Janion-Scheepers, Charlene [VerfasserIn]
Clemson, Allannah [VerfasserIn]
Scott, Marina Telonis [VerfasserIn]
Sgrò, Carla M [VerfasserIn]

Links:

Volltext

Themen:

Activity
Egg-to-adult viability
Fecundity
Journal Article
Metabolic rate
Plasticity
Research Support, Non-U.S. Gov't
Topt

Anmerkungen:

Date Completed 19.06.2020

Date Revised 19.06.2020

published: Electronic

Citation Status MEDLINE

doi:

10.1242/jeb.193433

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM29704415X