Determinants of isotopic coupling of CO2 and water vapour within a Quercus petraea forest canopy

Concentration and isotopic composition (δ13C and δ18O) of ambient CO2 and water vapour were determined within a Quercus petraea canopy, Northumberland, UK. From continuous measurements made across a 36-h period from three heights within the forest canopy, we generated mixing lines (Keeling plots) for δa13CO2, δa C18O16O and δa H218O, to derive the isotopic composition of the signal being released from forest to atmosphere. These were compared directly with measurements of different respective pools within the forest system, i.e. δ13C of organic matter input for δa13CO2, δ18O of exchangeable water for δa C18O16O and transpired water vapour for δa H218O. [CO2] and δa13CO2 showed strong coupling, where the released CO2 was, on average, 4 per mil enriched compared to the organic matter of plant material in the system, suggesting either fractionation of organic material before eventual release as soil-respired CO2, or temporal differences in ecosystem discrimination. δa C18O16O was less well coupled to [CO2], probably due to the heterogeneity and transient nature of water pools (soil, leaf and moss) within the forest. Similarly, δa H218O was less coupled to [H2O], again reflecting the transient nature of water transpired to the forest, seen as uncoupling during times of large changes in vapour pressure deficit. The δ18O of transpired water vapour, inferred from both mixing lines at the canopy scale and direct measurement at the leaf level, approximated that of source water, confirming that an isotopic steady state held for the forest integrated over the daily cycle. This demonstrates that isotopic coupling of CO2 and water vapour within a forest canopy will depend on absolute differences in the isotopic composition of the respective pools involved in exchange and on the stability of each of these pools with time.

Medienart:

E-Artikel

Erscheinungsjahr:

1999

Erschienen:

1999

Enthalten in:

Zur Gesamtaufnahme - volume:119

Enthalten in:

Oecologia - 119(1999), 1 vom: 04. Apr., Seite 109-119

Sprache:

Englisch

Beteiligte Personen:

Harwood, K G [VerfasserIn]
Gillon, J S [VerfasserIn]
Roberts, A [VerfasserIn]
Griffiths, H [VerfasserIn]

Links:

Volltext

Themen:

CO2
Carbon
Forest canopies
Journal Article
Key words Stable isotopes
Water vapour

Anmerkungen:

Date Revised 20.11.2019

published: Print

Citation Status PubMed-not-MEDLINE

doi:

10.1007/s004420050766

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM26997931X